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Disclaimer

These are notes from a course given by Alain Valette during the minisemester “Amenability
beyond groups” at the Erwin Schrödinger Institute in Vienna in March 2007. The reader is asked
to bear in mind the informal nature of course notes.

The letter G will be reserved to denote a group G. This group will most of the time be a
topological group and the topology will most of the time be assumed to be locally compact. It
will be clear from the context what assumptions we put on G. Similarly π will always denote a
representation of G. In case this representation acts on a Hilbert space (usually denoted H or Hπ)
we will assume that π is unitary and strongly continuous. These and similar conventions will be
used throughout these notes without further explanation.

1. Affine actions

1.1. 1-cohomology. Let G be a group and let V be a vector space (over some field k). An
affine action of G on V is a homomorphism α : G→ Aff(V ), where Aff(V ) is the group of affine
bijections V → V . We have the split exact sequence

0 // V // Aff(V ) // GL(V ) //ss
1

where V is regarded as the group of translations acting on V . Thus α gives a representation
π : G→ GL(V ) called the linear part of α.

Let us ask a converse question: if π : G→ GL(V ) is a representation, what are affine actions α
with linear part π? Such α must be of the form

α(g)v = π(g)v + b(g)

for any v ∈ V . The vector b(g) is called the translation part of α.
From the fact that α is a homomorphism it easily follows that b : G → V must satisfy the

1-cocycle relation:
b(gh) = π(g)b(h) + b(g) (1.1)

for all g, h ∈ G.

Example 1.1. If π is the trivial representation of G on V then b ∈ Hom(G,V ), where V is regarded
as the additive group.

Notation 1.2. By Z1(G, π) we shall denote the set of all 1-cocycles G→ V , i.e. all maps b satisfying
(1.1). It is easy to see that Z1(G, π) is a vector space under pointwise operations. The symbol
B1(G, π) will denote the set of 1-coboundaries, i.e. those b ∈ Z1(G, π) for which there exists a
vector v ∈ V such that

b(g) = π(v)− v

for all g ∈ G. Clearly B1(G, π) is a subspace of Z1(G, π). Finally we define

H1(G, π) = Z1(G, π)/B1(G, π)

and call H1(G, π) the first cohomology group of G with coefficients in the G-module V .

We can now write down a sort of a dictionary between concepts of geometric and algebraic
nature:

Affine actions with linear part π Z1(G, π)

Affine actions with linear part π and with a glob-
ally fixed point (i.e. conjugate to π via a transla-
tion)

B1(G, π)

Affine actions up to conjugation by a translation H1(G, π)
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Each line of the above table represents a one to one correspondence.

1.2. Affine isometric actions on Hilbert spaces. Let H be a Hilbert space and let Isom(H)
denote the group of affine isometries of H. Let α be a homomorphism G→ Isom(H).

Remark 1.3. The Mazur-Ulam theorem says that if E is a real Banach space then any isometry
of E is affine. For complex Banach spaces we might have to compose with complex conjugation.

For strictly convex Banach spaces (e.g. Hilbert spaces) this is quite easy because we then have
a metric characterization of segments: for x, y ∈ E the segment [x, y] between x and y is{

z ∈ E ‖x− z‖+ ‖z − y‖ = ‖x− y‖
}
.

In particular any isometry must preserve segments.

For a topological group G we will always assume that affine actions are continuous in the sense
that the map

G×H 3 (g, v) 7−→ α(g)v ∈ H
is continuous. The linear part of an isometric affine action is then a strongly continuous unitary
representation. We will stick to this setting for the rest of these notes.

Definition 1.4. An affine action α of G on H almost has fixed points if

∀ ε > 0 ∀K b G ∃ v ∈ H sup
g∈K

∥∥α(g)v − v
∥∥ < ε.

We can endow Z1(G, π) with the topology of uniform convergence on compact subsets and add
one more line to the dictionary:

Affine actions which almost have a fixed point The closure of B1(G, π) in Z1(G, π)

We define the reduced cohomology group H
2
(G, π) as the quotient

H
1
(G, π) = Z1(G, π)/B1(G, π). (1.2)

Let us now give a useful characterization of coboundaries. Remember that any 1-cocycle is, in
particular, a function G→ H, so we can speak about bounded cocycles.

Proposition 1.5. Let b ∈ Z1(G, π). Then(
b ∈ B1(G, π)

)
⇐⇒

(
b is bounded

)
.

Proof. “⇒” If b(g) = π(g)v − v for some fixed v ∈ H and all g ∈ G, we have
∥∥b(g)∥∥ ≤ 2‖v‖.

“⇐” Every bounded set B in a Hilbert space has a circumball (i.e. a closed ball containing
B with minimal radius). Thus if B is invariant under some group of isometries then so is its
circumball. It follows that the circumcenter (the center of the circumball) also is invariant under
the group.a

Let α be the affine action associated to b (now assumed to be bounded). Then for any g ∈ G
and v ∈ H we have α(g)v = π(g)v + b(g). The set b(G) is the orbit of 0 ∈ H under α. As this set
is bounded and α-invariant, the circumcenter of b(G) is α-fixed. Thus b ∈ B1(G, π). �

1.2.1. Remarks. Let us begin with the following theorem:

Theorem 1.6 (Delorme, Guichardet (1973)). Let G be a locally compact group. Then
(1) If G has property (T) then every affine isometric action of G on a Hilbert space has a fixed

point. In particular H1(G, π) = {0} for any unitary representation π.
(2) If G is σ-compact then the converse of (1) is true.

It is also known that the converse of (1) of the above theorem is not true without assumption
of σ-compactness of G (de Cornulier, 2005).

For the second remark we need the definition:
aThis statement is called the lemma of the center.
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Definition 1.7. A locally compact group G has the Haagerup property (or is a-T-menable) if G
admits a metrically proper affine isometric action α on a Hilbert space H, i.e. such that

∀ v ∈ H lim
g→∞

∥∥α(g)v
∥∥ = +∞.

Let us remark that an affine isometric action is proper if and only if the norm of the associated
cocycle is a proper function. Indeed, taking the special case of v = 0 in Definition 1.7 we see that
lim

g→∞

∥∥b(g)∥∥ = +∞. Therefore g 7→
∥∥b(g)∥∥ is a proper function. Conversely if g 7→

∥∥b(g)∥∥ is proper

then for any v ∈ H∥∥α(g)v
∥∥ =

∥∥π(g)v + b(g)‖ ≥
∣∣∣∥∥b(g)∥∥− ∥∥π(g)v

∥∥∣∣∣ −−−→
g→∞

+∞.

The class of a-T-menable groups contains σ-compact amenable groups, free groups, Coxeter
groups, every closed subgroup of SO(n, 1), SU(n, 1), etc. ...

Theorem 1.8 (Higson, Kasparov (1996)). A-T-menable groups satisfy the strong form of the
Baum-Connes conjecture.

1.3. Examples.

1.3.1. Finite dimensional Hilbert spaces. Let En be the n dimensional Euclidean space. An isom-
etry of En either has a fixed point or it is a composition of a linear isometry and a translation by
a vector fixed by the linear part.

Let λ be an isometry of En without a fixed point. Then the associated action of Z (by powers
of λ) is proper (of course, if λ had a fixed vector the action would not be proper). Moreover there
is the following result:

Theorem 1.9 (Bieberbach (1930)). A finitely generated group with a proper isometric action on
En is virtually Abelian.

1.3.2. A construction of an affine action. Let (X, d) be a metric space with an action of G by
isometries. Suppose we have

• a Hilbert space H with a unitary representation π of G,
• a continuous map c : X ×X → H such that

– ∀ x, y ∈ X g ∈ G c(gx, gy) = π(g)c(x, y),
– ∀ x, y, z ∈ X c(x, y) + c(y, z) = c(x, z) (this is called the Chasles’ relation),
– there exists a function ϕ : R+ → R+ such that

∥∥c(x, y)∥∥2 = ϕ
(
d(x, y)

)
for all x, y ∈ X

(i.e. the norm of c(x, y) depends only on d(x, y)).
Then to any x0 ∈ X we can associate an affine action α of G on H with linear part π such that∥∥b(g)∥∥2 = ϕ

(
d(gx0, x0)

)
for all g ∈ G. Indeed, we can put b(g) = c(gx0, x0). By Chasles’ relation

b ∈ Z1(G, π).
If ϕ is a proper function (i.e. lim

t→∞
ϕ(t) = +∞) and G acts properly on X then b is a proper

cocycle and so G is a-T-menable.
Now let us give a concrete example of the situation described above. Let X be a tree: X =

(V,E). Let E be the set of oriented edges in X (each edge appears in E twice – with both
orientations). Let H = `2(E) and let π be the permutation representation (we assumed that G
acts on X).

For any x, y ∈ X (or more precisely x, y ∈ V ) we have to define the vector c(x, y) ∈ `2(E). Let
e ∈ E and let [x, y] be the unique (oriented) geodesic path from x to y. We let

c(x, y)(e) =


0 if e is not in [x, y]
+1 if e ∈ [x, y] with the correct orientation
−1 if e ∈ [x, y] with the wrong orientation

The Chasles’ relation follows from the fact that all triangles in a tree are degenerate, so if x, y, z
are vertices and we take a geodesic path from x to y and then from y to z then part of the path
will have to be travelled in both directions and it will “cancel”.
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Moreover we have
∥∥c(x, y)∥∥2 = 2d(x, y).

It follows that groups acting properly on a tree are a-T-menable (such groups are e.g. Fn,
SL(Qp), etc.).

The above construction extends to groups acting on spaces with walls, CAT(0) cube complexes,
spaces with measured walls,...

1.3.3. Infinite dimensional Hilbert spaces. In infinite dimensional Hilbert space we can have an
“almost recurrent” isometry. We shall exhibit one on `2(N), where N = 1, 2, 3, ....

Let F(N) = CN (all functions N → C). Define a linear operator on F(N) by

(Ua)n = e
2πi
2n an

for any (an) ∈ F(N). Note that U has no non zero fixed vector (because 0 6∈ N).
Now let w = (1, 1, . . .) ∈ F(N) and let α = Tw◦U◦T−1

W , where Tw is the translation by w. This
means that

(α(a))n = e
2πi
2n an +

(
1− e

2πi
2n

)
for any a = (an) ∈ F(N).

The first claim is that α
(
`2(N)

)
⊂ `2(N). Indeed, this is the case because the sequence (bn)

with bn = 1− e
2πi
2n belongs to `2(N).

Proposition 1.10 (Edelstein (1964)). The map α
∣∣
`2(N)

is an isometry with unbounded orbits.
Moreover there is a constant R > 0 such that∥∥αl(0)

∥∥ ≤ R

for infinitely many l’s.

Proof. The only fixed point of U is 0 ∈ F(N), so the only fixed point of α is w which does not
belong to `2(N). Therefore α has no fixed point in `2(N). It follows that α has unbounded orbits
(Proposition 1.5 and the dictionary above).

Now αl(o) = w − U lw, so for l = 2k we have

∥∥α2k

(0)
∥∥2 =

∞∑
n=1

∣∣1− e
2πi2k

2n
∣∣2 =

∞∑
n=k+1

∣∣1− e
2πi

2(n−k)
∣∣2 =

∞∑
t=1

∣∣1− e
2πi
2t

∣∣2.
We define R as the square root of the sum of the last series above. �

1.3.4. Minimal actions. An action is called minimal if it has dense orbits.

Question 1.11 (A. Navas). Which finitely generated groups admit an isometric minimal action
on an infinite dimensional Hilbert space (separable for simplicity)?

Proposition 1.12. The wreath product Z2 o Z admits a minimal action on `2R(Z).

Proof. First we identify Z2 with Z
[√

2
]
. Z

[√
2
]

acts minimally on R by translation, so
⊕
Z

Z
[√

2
]

acts minimally by translations on `2R(Z) (because
⊕
Z

R is dense in `2R(Z)). This action is equivariant

with respect to the left regular representation of Z, so it extends to an action of the wreath
product. �

Theorem 1.13. Every minimal isometric action of a finitely generated nilpotent group on a
Hilbert space is an action by translations on a finite dimensional space.

Let us conclude this section with an open question:

Question 1.14. Can polycyclic groups act minimally isometrically on an infinite dimensional
Hilbert space?
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2. Amenability & 1-cohomology

Definition 2.1. Let π be a unitary representation of a locally compact group G on a Hilbert
space H. We say that π almost has invarian vectors if

∀ ε > 0 ∀K b G ∃ ξ ∈ H ‖ξ‖ = 1, sup
g∈K

∥∥π(g)ξ − ξ
∥∥ < ε.

Example 2.2. As an example of the use of this notion let us state the following theorem:

Theorem 2.3 (Reiter’s property (P2)). A locally compact group G is amenable if and only if the
left regular representation λG on L2(G) almost has invariant vectors.

Theorem 2.4 (Guichardet (1972)). Let G be a σ-compact group and π a unitary representation
of G with no non zero fixed vector. Then(

π does not almost
have invariant vectors

)
⇐⇒

(
The space B1(G, π) is closed

in the space Z1(G, π)

)
Before proving this theorem let us state an immediate corollary.

Corollary 2.5. If G is σ-compact and non compact then G is non amenable if and only if
B1(G,λG) is closed in Z1(G,λG).

In particular if G is amenable, σ-compact and non compact then we have H1(G,λG) 6= {0}.

Proof of Theorem 2.4. BecauseG is σ-compact Z1(G, π) is a Frechet space. Consider the cobound-
ary map ∂ : Hπ → Z1(G, π) (given by ∂ξ(g) = π(g)ξ − ξ).

We know that

• ∂ is linear,
• ∂ is continuous (because π is continuous),b

• ∂ is injective (because π has no non zero fixed vectors),
• the image of ∂ is, of course, B1(G, π).

We have the following chain of equivalences:(
B1(G, π) is closed in Z1(G, π)

)
m(

∂−1 is continuous
)

m(
∃ C > 0, K b G ∀ ξ ∈ Hπ ‖ξ‖ ≤ C sup

g∈K

∥∥π(g)ξ − ξ
∥∥)

m(
π does not almost have invariant vectors

)
The first equivalence follows from the closed graph theorem (the version for Frechet spaces, here
we use σ-compactness of G). To see the second equivalence, recall the definition of the seminorms
defining the topology of Z1(G, π). �

Exercise 2.6. Let Rd denote the the group of real numbers with discrete topology. Show that
∂ : `2(R) → Z1(G,λRd

) is a continuous isomorphism with discontinuous inverse (i.e. H1(G,λRd
) =

{0}).
Why does it not contradict the closed graph theorem?

bMoreover ∂ has image in the subspace of bounded continuous maps G → H and is continuous with the sup-

norm on the latter space. Nevertheless the familiar version of the closed graph theorem for Banach spaces does not

suffice to prove Theorem 2.4.



AFFINE ISOMETRIC ACTIONS ON HILBERT SPACES & AMENABILITY 7

3. Property (BP0)

Definition 3.1. A unitary representation π of a locally compact group G is called a C0-
representation or it is mixing if

∀ ξ, η ∈ Hπ lim
g→∞

(π(g)ξ η) = 0.

Example 3.2.
(1) Any representation of a compact group is C0.
(2) The regular representation of any locally compact group is C0.
(3) If G acts on a probability space (X,B, µ) in a measure preserving way then we can consider

the associated unitary representation πX of G on L2
0(X,µ), i.e. the orthogonal complement

in L2(X,µ) of the space of constant functions. We have(
πX is C0

)
⇐⇒

(
The action of G on X is mixing

)
.

(Recall that an action is mixing if for any A,B ∈ B we have lim
g→∞

µ(A∩gB) = µ(A)µ(B).)

Definition 3.3. A locally compact group G has property (BP0) if for every affine isometric action
of G on a Hilbert space with C0 linear part either the action has a fixed point or the action is
metrically proper.

An equivalent definition is the following: G has property (BP0) if and only if for any C0-
representation π and any b ∈ Z1(G, π) either b is bounded or b is proper (cf. Proposition 1.5). This
explains the origin of the name of property (BP0): “Bounded”, “Proper” and “C0-representations”.

Remark 3.4.
(1) Property (T) implies property (BP0).
(2) The groups SO(n, 1) and SU(n, 1) have property (BP0) and they do not have property

(T) (Shalom, 2000).
(3) If H is a closed cocompact subgroup of G and H has property (BP0) then G has (BP0).

This is because cocompactness of H in G guarantees that if restriction of b ∈ Z1(G, π) is
bounded/proper then b must be bounded/proper.

Theorem 3.5 (de Cornulier, Tessera, Valette). Solvable groups have property (BP0).

Corollary 3.6. Let G be a connected Lie group or a linear algebraic group over Qp (or some
other local field of characteristic 0). Then G has property (BP0).

Proof. Such a group has a cocompact solvable subgroup. �

Theorem 3.5 is proved by induction on the solvability rank of G. The first step is provided by
the following proposition:

Proposition 3.7. Let G be a locally compact group with non compact center. Then G has (BP0).

In particular every Abelian group has (BP0). Proposition 3.7 has the following corollary:

Corollary 3.8 (Bekka, Cherix, Valette (1991)). σ-compact, amenable groups are a-T-menable.

Proof. If G is σ-compact and amenable then H = G×Z is non compact, σ-compact and amenable.
Therefore by the statement after Corollary 2.5 the group H1(H,λH) is not trivial. Take b ∈
Z1(H,λH) \ B1(H,λH). By Proposition 3.7 the cocycle b is proper because it is not bounded,
i.e. trivial (cf. Proposition 1.5). Thus b remains proper after restriction to G. Therefore G does
admit a proper affine isometric action on a Hilbert space. �

Proof of Proposition 3.7. Let π be a C0-representation of G and let b ∈ Z1(G, π). Assume that b
is not proper. We must prove that b is bounded (cf. Proposition 1.5).
Claim: It is enough to show that b

∣∣
Z(G)

is bounded.
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Let us first prove that the above claim implies the proposition. Let α be the action associated
to b: α(g)v = π(g)v + b(g). If b

∣∣
Z(G)

is bounded then the fixed point set

Hα
(
Z(G)

)
is not empty. In fact this set consists of one point because if v0, v1 are fixed by α

(
Z(G)

)
then

v0 − v1 is fixed under π
(
Z(G)

)
. Thus

Z(G) 3 z 7−→ (π(z)(v0 − v1) v0 − v1)

is a constant C0 function on a non compact group. It is therefore identically zero and consequently
v0 = v1 (just evaluate this function at 1 ∈ Z(G)).

Moreover, since Z(G) is a normal subgroup of G, we have that Hα
(
Z(G)

)
is α-invariant. There-

fore α has a globally fixed point and b is a coboundary. This proves the claim.
It remains to show that indeed b

∣∣
Z(G)

is bounded. We assumed that b is not proper, so

lim inf
g→∞

∥∥b(g)∥∥ = C < +∞ in the sense that there is a net in G divergent to infinity (eventu-

ally outside of every compact set) for which the function g 7→
∥∥b(g)∥∥ remains bounded. Now for

any z ∈ Z(G) and g ∈ G we have

π(g)b(z) + b(g) = b(gz) = b(zg) = π(z)b(g) + b(z)

(by the 1-cocycle relation), so that

b(z) =
(
1− π(z)

)
b(g) + π(g)b(z). (3.1)

Taking scalar product with b(z) of both sides of (3.1) we obtain

(b(z) b(z)) =
((

1− π(z)
)
b(g) b(z)

)
+ (π(g)b(z) b(z))

The absolute value of the first term on the right hand side is smaller than 2
∥∥b(g)∥∥∥∥b(z)∥∥ while the

second term tends to 0 when g →∞. Taking g to infinity of G in such a way that
∥∥b(g)∥∥ remains

bounded we find that ∥∥b(z)∥∥2 ≤ 2C
∥∥b(z)∥∥

and canceling
∥∥b(z)∥∥ we obtain

∥∥b(z)∥∥ ≤ 2C for any z ∈ Z(G). �

4. Growth of cocycles

If G is a locally compact compactly generated group and S is a compact and symmetric gener-
ating set for G then we can define the word length function | · |S on G by

|g|S = min
{
n g = s1s2 · · · sn, si ∈ S

}
for any g ∈ G.

Now let π be a unitary representation of G and let b ∈ Z1(G, π). We arrive at the following
question:

Question 4.1. How fast does
∥∥b(g)∥∥ grow with respect to |g|S?

Lemma 4.2. We have
∥∥b(g)∥∥ = O

(
|g|S

)
. More precisely∥∥b(g)∥∥ ≤ (

max
s∈S

∥∥b(s)∥∥)
· |g|S . (4.1)

Proof. Let us first remark that whenever G acts by isometries on a metric space (X, d) and we
chose an x0 ∈ X then

d(gx0, x0) ≤
(
max
s∈S

d(sx0, x0)
)
· |g|S . (4.2)
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Indeed, for g = s1s2 · · · sn with n = |g|S we have

d(gx0, x0) = d(s1s2 · · · snx0, x0)

≤ d(s1s2 · · · snx0, s1s2 · · · sn−1x0) + d(s1s2 · · · sn−1x0, x0)

= d(snx0, x0) + d(s1s2 · · · sn−1x0, x0)

≤ d(snx0, x0) + d(s1s2 · · · sn−1x0, s1s2 · · · sn−2x0) + d(s1s2 · · · sn−2x0, x0)

= d(snx0, x0) + d(sn−1x0, x0) + d(s1s2 · · · sn−2x0, x0)
...

≤ d(snx0, x0) + d(sn−1x0, x0) + · · ·+ d(s1x0, x0)

≤ n
(
max
s∈S

d(sx0, x0)
)

because the action of G is isometric.
Now let α be the affine isometric action of G on H associated to b. Using (4.2) with X = H

and x0 = 0 we obtain precisely (4.1). �

Lemma 4.2 gives us one of the ways to see that g 7→
∥∥b(g)∥∥ is a length function on G.

Lemma 4.3. If b ∈ B1(G, π) then
∥∥b(g)∥∥ = o(|g|S), i.e.∥∥b(g)∥∥

|g|S
−−−−−→
|g|S→∞

0.

Proof. Let us fix ε > 0. There exists b′ ∈ B1(G, π) such that

max
s∈S

∥∥b(s)− b′(s)
∥∥ < ε

2

(recall that Z1(G, π) has the topology of uniform convergence on compact sets). Therefore∥∥b(g)∥∥
|g|S

≤
∥∥b(g)− b′(g)

∥∥
|g|S

+

∥∥b′(g)∥∥
|g|S

≤ ε

2
+

∥∥b′(g)∥∥
|g|S

,

where in the last inequality we simply used (4.1) with b replaced by b− b′.
Now b′ is a coboundary, so by Proposition 1.5 it is bounded and∥∥b′(g)∥∥

|g|S
<
ε

2

for sufficiently large |g|S . �

4.1. Application: a new look at an old proof.

Theorem 4.4 (Von Neumann’s mean ergodic theorem). Let U be a unitary operator on a Hilbert
space H. Then for any v ∈ H we have

1
n

(
1 + U + U2 + · · ·+ Un−1

)
v

‖·‖−−−−→
n→∞

Pv,

where P is the orthogonal projection onto ker(U − 1).

Proof. Let us define a unitary representation π of Z on H by π(n) = Un. Also let b ∈ Z1(G, π)
be the unique cocycle with b(1) = v. Using the cocycle relation (1.1) we find that

b(n) = b
(
(n− 1) + 1

)
= Un−1b(1) + b(n− 1)

= Un−1b(1) + Un−2b(1) + b(n− 2)
...

Un−1b(1) + Un−2b(1) + · · ·+ Ub(1) + b(1)

=
(
1 + U + U2 + · · ·+ Un−1

)
v.
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Let H1 = PH and H0 = H⊥
1 . We have H = H1⊕H0 and both subspaces are invariant for U . Let

π1 and π0 be corresponding subrepresentations of π. Furthermore let

b1(n) = P b(n),

b0(n) = (1− P )b(n).

Then bi ∈ Z1(G, πi) for i = 1, 0. On H1 the operator U acts as identity, so

b1(n) = P (1 + U + U2 + · · ·+ Un−1
)
v = (1 + U + U2 + · · ·+ Un−1

)
Pv = nPv.

Therefore 1
nb1(n) = Pv. On the other hand, we have

H0 = ker(U − 1)⊥ = ker(U∗ − 1)⊥ = ran(U − I)

(Uξ = ξ if and only if U∗ξ = ξ). This means that b0(1) = (I − P )v is the limit of a sequence
(U − 1)ξn for some ξn ∈ H. It is easy to see that for each fixed k the vector b0(k) is the limit of
(∂ξn)(k), so b0 is in the closure of B1(G, π0) in the topology of uniform convergence on compact
subsets of Z. By Lemma 4.3 we have ∥∥b0(n)

∥∥
n

−−−−→
n→∞

0.

�

The next exercise is a recap on Sections 1 and 4.

Exercise 4.5. Let α be an affine isometry of a Hilbert space H. For any ξ ∈ H we have

α(ξ) = Uξ + v

where U is a unitary operator and v ∈ H is a fixed vector. Let b be the cocycle on Z with b(1) = v.
Prove that

(1) the following are equivalent:
(a) α has a fixed point,
(b) v ∈ ran(U − 1),
(c) b is bounded;

(2) the following are equivalent:
(a) α almost has a fixed point, but no fixed point,
(b) v ∈ ran(U − 1) \ ran(U − 1),
(c) b is unbounded with

∥∥b(n)
∥∥ = o(n);

(3) the following are equivalent:
(a) α does not almost have a fixed point,
(b) v 6∈ ran(U − 1),
(c) ∃ C > 0

∥∥b(n)
∥∥ ≥ C|n|.

Let us comment that part (3) of Exercise 4.5 is analogous to the finite dimensional situation of
Subsubsection 1.3.1. The Edelstein example (Proposition 1.10) falls under case (2).

5. Applications to geometric group theory

Definition 5.1. Let (X, dX) and (Y, dY ) be metric spaces and let f : X → Y be a map.
(1) f is a uniform embedding if there exist functions ρ+, ρ− : R+ → R such that lim

r→+∞
ρ±(r) =

+∞ and

∀ x1, x2 ∈ X ρ−
(
dX(x1, x2)

)
≤ dY

(
f((x1), f(x2)

)
≤ ρ+

(
dX(x1, x2)

)
.

(2) f is a quasi isometric embedding if f is a uniform embedding for which the functions ρ±
can be chosen to be affine functions.

(3) f is a quasi isometry if f is a quasi isometric embedding and there exists a quasi isometric
embedding g : Y → X such that f◦g is a bounded distance from idX and g◦f is a bounded
distance from idY .
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An example of a quasi isometry is the map R 3 x 7→ [x] ∈ Z. Thus a quasi isometry need not be
an isometry nor even a continuous map. Similarly a quasi isometric or uniform embedding need
not be continuous nor an embedding.

Theorem 5.2 (Gromov (1979)). For finitely generated groups being virtually nilpotent is an in-
variant of quasi isometries.

Theorem 5.2 is really a restatement (possibly a weakening as well) of Gromov’s theorem. What
Gromov has in fact proved is that finitely generated virtually nilpotent groups are exactly the
groups with polynomial growth.

Corollary 5.3 (Quasi isometric rigidity of Zn). If G is a finitely generated group quasi isometric
to Zn then G contains Zn as a finite index subgroup.

The next result is at first sight unrelated to previous statements, but we will see that it in fact
is.

Theorem 5.4 (Bourgain (1984)). The 3-regular tree does not embed quasi isometrically into a
Hilbert space.

Other results on quasi isometry invariants for finitely generated groups include:

Theorem 5.5. (Erschler) Being virtually solvable is not a quasi isometry invariant property.

Question 5.6. Is being virtually polycyclic a quasi isometry invariant?

Question 5.6 is open. It lead Yehuda Shalom to the following definition:

Definition 5.7. Let G be a locally compact group. We say that G belongs to the class (AmenHFD)
if

(1) G is amenable,
(2) if a unitary representaition π of G satisfies H1(G, π) 6= {0} then π contains a finite

dimensional subrepresentation (cf. (1.2)).

The name of the class (AmenHFD) comes from “Amenability”, “coHomology” and “Finite
Dimension”.

Theorem 5.8 (Shalom (2003)).
(1) The following groups are in the class (AmenHFD):

• connected solvable Lie groups,
• virtually polycyclic groups,
• semi direct products Qp o Z (where Qp is the field of p-addic numbers and Z acts on

its additive group by multiplication by powers of p),
• lamplighter groups, i.e. groups of the form F o Z, where F is a finite group.

(2) For finitely generated groups being in (AmenHFD) is a quasi isometry invariant.
(3) A finitely generated infinite group in (AmenHFD) admits a finite index subgroup which

surjects onto Z.

Corollary 5.9 (of Theorem 5.8 (3)). A group quasi isometric to a polycyclic group virtually
surjects onto Z.

Question 5.10. Which compactly generated groups admit a quasi isometric embedding into a
Hilbert space?

The group Zn acts by translations on En. The choice of any orbit gives a quasi isometric embed-
ding of Zn into En. More generally any closed subgroup of Isom(En) embeds quasi isometrically
into En. It is not easy to find other examples.

Remark 5.11. There are some negative results. For example the following:

Theorem 5.12 (Cheeger, Kleiner, Lee, Naor (2006)). The discrete Heisenberg group does not
embed quasi isometrically into `1.
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Of course `1 is not a Hilbert space, but we mention this result here because is solves (negatively)
a conjecture coming from theoretical computer science.

Conjecture 5.13 (de Cornulier, Tessera, Valette). A compactly generated group which embeds
quasi isometrically into a Hilbert space admits a proper isometric action on a finite dimensional
Euclidean space. In particular, because of Bieberbach’s theorem (Theorem 1.9), if G is finitely
generated then it should be virtually nilpotent.

We shall refer to Conjecture 5.13 as the CTV conjecture.

Remark 5.14.

(1) A non amenable finitely generated group cannot embed quasi isometrically into a Hilbert
space. This is because of a deep result of Benjamini-Schramm (1998) which says that
the Cayley graphs of such a group contains a quasi isometrically embedded copy of the
3-regular tree, and Bourgain’s theorem (Theorem 5.4).

(2) A finitely generated solvable group which is not virtually nilpotent cannot be embedded
quasi isometrically into a Hilbert space. The reason for this is a result of de Cornulier-
Tessera (2006) that such a group contains a quasi isometrically embedded copy of the free
semigroup on two generators.

Theorem 5.15 (de Cornulier, Tessera, Valette). The CTV conjecture holds for compactly gener-
ated groups in (AmenHFD).

In particular we have

Corollary 5.16. A virtually polycyclic group embeds quasi isometrically into a Hilbert space if
and only if it is virtually Abelian.

Compare this with the following result:

Theorem 5.17 (Pauls (2001)). A virtually nilpotent group embeds quasi isometrically into a
CAT(0) space if and only if it is virtually Abelian.

The hypothesis of Theorem 5.17 is stronger than that of Corollary 5.16, but so is the thesis
(Hilbert spaces are CAT(0), in fact they are prototypical examples of such spaces). The proofs
are, however, very different.

Let us concentrate on another corollary of the CTV theorem.

Corollary 5.18 (quasi isometric rigidity of Zn). If G is a finitely generated group which is quasi
isometric to Zn then G has a finite index subgroup isomorphic to Zn.

The proof of this result is independent of Gromov’s theorem (Theorem 5.2).

Proof of Corollary 5.18. Zn is in the class (AmenHFD). Therefore so is G by Theorem 5.8 (2).
Also Zn embeds quasi isometrically into a Hilbert space, thus so does G. By the CTV theorem G
is virtually Abelian, so G has Zm as a finite index subgroup. To see that m = n we must consider
growth which on one hand is a quasi isometry invariant and detects the rank of Zk. �

Remark 5.19. It is also possible to give an algebraic proof of Bourgain’s theorem (Theorem 5.4)
using the CTV theorem. The idea behind it is the following: it is known that there is an action
of SL2(Q2) on the 3-regular tree T3 (Serre’s book “Trees”). Using this action one can show that
T3 is quasi isometric to Q2 o Z. This last group is in (AmenHFD). Now all we need to do is show
that Q2 o Z cannot act properly and isometrically on a finite dimensional Euclidean space.

Such an action would be a homomorphism Q2 o Z → Isom(En) and by properness it would
have a compact kernel. But the only compact normal subgroup of Q2 o Z is {1}, so Q2 o Z would
have to embed into the Lie group Isom(En). But Lie groups don’t have small subgroups, and an
embedding of Q2 o Z would contradict that.
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5.1. Ideas on how to prove the CTV theorem.

Theorem 5.20 (Schönberg (1930)). Let X be a set and let ψ : X ×X → R+ be symmetric and
equal 0 on the diagonal.c Further let H be a Hilbert space. Then there exists a map f : X → H
such that ψ(x, y) =

∥∥f(x)− f(y)
∥∥2 if and only if ψ is conditionally negative definite, i.e. for any

n ∈ N, any x1, . . . , xn ∈ X and any λ1, . . . , λn ∈ R with
n∑

i=1

λi = 0 we have

n∑
i=1

n∑
j=1

λiλjψ(xi, xj) ≤ 0.

Moreover if a group G acts on X and ψ is G-invariant then f can be taken to be G-equivariant
with respect to some isometric affine action of G on H.

Lemma 5.21 (Gromov (for discrete groups)). Let G be a compactly generated and amenable
group. Let f be a uniform embedding of G into a Hilbert space H with control functions ρ±. Then
there exists a constant A ≥ 0 (which can be taken = 0 if G is discrete) and an equivariant uniform
embedding f̃ of G into H with control functions ρ− −A and ρ+ +A.

Proof for G discrete. Set ψ(x, y) =
∥∥f(x)− x(y)

∥∥2. We have

ρ−
(
|x−1y|S

)2 ≤ ψ(x, y) ≤ ρ+

(
|x−1y|S

)2
. (5.1)

Fix x, y ∈ G and consider the function

u : G 3 g 7−→ ψ(gx, gy).

u is bounded by the second inequality of (5.1). Let m be an invariant mean on `∞(G) and define

ψ̃(x, y) = m(u).

The function ψ̃ : G×G→ R+ is then G-invariant and we have

ρ−
(
|x−1y|S

)2 ≤ ψ̃(x, y) ≤ ρ+

(
|x−1y|S

)2
.

All we need to see now is that ψ̃ is conditionally negative definite and use Schönberg’s theorem
(Theorem 5.20).

For this we note that conditionally negative definite functions form a convex cone which is closed
in the topology of pointwise convergence. Moreover the mean m is a weak limit of probability
measures. �
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Solutions of exercises

Solution of Exercise 2.6. The regular representation of a non compact group does not have non
zero fixed vectors, so ∂ is injective and continuous by the reasoning in the proof of Theorem 2.4.
It remains to show that ∂ maps `2(R) onto Z1(Rd, λRd

).
Let us skip ahead to the result that every Abelian group has property (BP0) (it follows from

Proposition 3.7). This means that Rd must have (BP0). So if b is in Z1(Rd, λRd
) then it must be

either bounded (i.e. lie in B1(Rd, λRd
)) or

Rd 3 t 7−→
∥∥b(t)∥∥

must be a proper function (preimage of a compact set is compact). Observe that existence of a
proper continuous function on a locally compact space implies σ-compactness. Therefore there are
no non zero proper cocycles (ones whose norm is a proper function). Therefore, by property (BP0),
there are no nontrivial cocycles in Z1(Rd, λRd

). This means that ∂ maps `2(R) onto Z1(Rd, λRd
).

cSuch a ψ is then called a symmetric kernel with zero diagonal.
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To see that ∂−1 is not continuous let us note that the topology of Z1(Rd, λRd
) is the topology

of pointwise convergence. Therefore if ∂−1 were continuous then for a net of cocycles (bγ) with
bγ(s) = λsξγ − ξγ convergent at some point t ∈ R \ {0} the net (ξγ) would have to be convergent
in `2(R). In other words the operator (λt − I)−1 would extend from ran(λt − 1) to a continuous
map of the Hilbert space `2(R). But for each t 6= 0 the spectrum of λt is the whole unit circle: it
is non empty and usλtu

∗
s = eistλt for any s ∈ R, where us is the unitary operator

(usψ)(k) = eiskψ(k)

which shows that the spectrum is invariant under all rotations.
The reason why this does not contradict the closed graph theorem is that Z1(Rd, λRd

) is not a
Frechet space because uncountably many seminorms are needed to define its topology. �

Solution of Exercise 4.5. As in the proof of Theorem 4.4 the isometry α defines a representation
π of Z by π(n) = Un, where U is the linear part of α.

Now let us turn to the following observation: the map

Ψ : Z1(Z, π) 3 b 7−→ b(1) ∈ H
is an isomorphism of topological vector spaces. Indeed, any vector can be a value of a cocycle at
the point 1 ∈ Z and this value determines the cocycle uniquely (cf. proof of Theorem 4.4). This
shows that Ψ is an isomorphism. Moreover the topology on Z1(Z, π) is the topology of pointwise
convergence (and value of a cocycle at any point n ∈ Z is given by applying a fixed bounded
operater to its value at 1 ∈ Z). This shows that Ψ is a homeomorphism.

It is easy to see that Ψ
(
B1(Z, π)

)
= ran(U − 1). Thus also Ψ

(
B1(Z, π)

)
= ran(U − 1).

Now recall the dictionary presented in Section 1 to see that we have the equivalences

(1a) ⇐⇒ (1b), (2a) ⇐⇒ (2b), (3a) ⇐⇒ (3b).

In order to have the whole exercise wrapped up we need one more remark, namely that if
v 6∈ ran(U − 1) then we have Pv 6= 0, where P is the projection onto ker(U − 1). Moreover by von
Neumann’s mean ergodic theorem we have

1
nb(n) −−−−→

n→∞
Pv,

so
∥∥b(v)∥∥ ≥ Cn for some constant C > 0 (e.g. C = 1

2‖Pv‖).
Now we can finish the solution of our exercise. Equivalence between (1c) and (1a) is the content

of Proposition 1.5.
From Lemma 4.3 we see that (3c) implies (3a) and (3b), and by the remark above (3b) implies

(3c).
Finally by Proposition 1.5 and Lemma 4.3 we know that (2c) follows from (2a) and/or (2b).

Conversely if (3c) is satisfied then b cannot be a coboundary (because it is unbounded), but
v = b(1) cannot at the same time lie outside ran(U − 1) (again by the remark above). �


